A Free Boundary Problem Describing the Saturated-unsaturated Flow in a Porous Medium
نویسنده
چکیده
This paper presents a functional approach to a nonlinear model describing the complete physical process of water infiltration into an unsaturated soil, including the saturation occurrence and the advance of the wetting front. The model introduced in this paper involves a multivalued operator covering the simultaneous saturated and unsaturated flow behaviors and enhances the study of the displacement of the free boundary between these two flow regimes. The model resides in Richards’ equation written in pressure form with an initial condition and boundary conditions which in this work express the inflow due to the rain on the soil surface on the one hand, and characterize a certain permeability corresponding to the underground boundary, on the other hand. Existence, uniqueness, and regularity results for the transformed model in diffusive form, that is, for the moisture of the soil, and the existence of the weak solution for the pressure form are proved in the 3D case. The main part of the paper focuses on the existence of the free boundary between the saturated and unsaturated parts of the soil, and this is proved, in the 1D case, for certain stronger assumptions on the initial data and boundary conditions.
منابع مشابه
A NOVEL HOMOTOPY PERTURBATION METHOD: KOUROSH´S METHOD FOR A THERMAL BOUNDARY LAYER IN A SATURATED POROUS MEDIUM
this paper a novel homotopy perturbation method has been presented for forced convection boundary layer problems in a porous medium. Noting the infinite condition, a homotopy form which is similar to the singular perturbation form has been considered. The inner and outer solutions have been achieved and the coincidence of the results has been investigated with a proper matching method. The resu...
متن کاملDiffusion-thermo effects on MHD free convective radiative and chemically reactive boundary layer flow through a porous medium over a vertical plate
The main purpose of this work is to investigate the porous medium and diffusion-thermo effects on unsteady combined convection magneto hydrodynamics boundary layer flow of viscous electrically conducting fluid over a vertical permeable surface embedded in a high porous medium, in the presence of first order chemical reaction and thermal radiation. The slip boundary condition is applied at the p...
متن کاملA Free Boundary Problem Describing the Saturated-unsaturated Flow in a Porous Medium. Part Ii. Existence of the Free Boundary in the 3d Case
During a rainfall water infiltration into an unsaturated soil, zones of saturation may be developed anywhere within the flow domain. Consequently, a natural question arises: under which conditions depending on the rate at which rain water is supplied, the initial moisture distribution in the soil, the presence of underground sources and the boundary permeability, the flow domain may be separate...
متن کاملEffective Calculation of Multiple Solutions of Mixed Convection in a Porous Medium
This paper considers an important model of boundary value problem with a condition at infinity namely combined free and forced convection over a plane of arbitrary shape embedded in a fluid-saturated porous medium; this model admits dual solutions, and uses a technique, which is to some extent modification of homotopy analysis method (HAM), in order to obtain dual solutions analytically with hi...
متن کاملRigidity and Irregularity Effect on Surface Wave Propagation in a Fluid Saturated Porous Layer
The propagation of surface waves in a fluid- saturated porous isotropic layer over a semi-infinite homogeneous elastic medium with an irregularity for free and rigid interfaces have been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for Love waves is derived by simple mathematical techniques followed by Fourier transformations. It can be seen t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004